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The wave functions of the water and the ammonia molecules have been determined for many 
nuclear configurations by both the method of moments and the method of energy variation. The 
accuracy of the results obtained by the two methods is similar although the method of moments 
requires considerably less integrational work. Some technical problems connected with the use of 
the method of moments are discussed. 

Die Wellenfunktionen des Wasser- und Ammoniakmolekiils wurden ffir mehrere molekulare 
Konfigurationen nach der Momentenmethode und der Methode der Energievariation bestimmt. 
Die Genauigkeit beider Methoden ist ungefghr gleich, obwohl bei der Momentenmethode weniger 
Aufwand an Integration ben6tigt wird. Einige technische Probleme bei der Verwendung der Momenten- 
methode werden diskutiert. 

Les fonctions d'onde de l'eau et de l'ammoniac ont &6 d6termin6es pour de nombreuses configura- 
tions nucl6aires par la re&bode des moments et la m6thode variationnelle. Les pr6cisions atteintes 
par les deux m6thodes sont comparables quoique la m6thode des moments n6cessite un moindre effort 
sur le plan des int6grations. Discussion de certains problbmes techniques li6s g l'emploi de la m6thode 
des moments. 

1. Introduction 

In prev ious  pape r s  of  this series [1]  1 the poss ib i l i ty  of  app ly ing  the m e t h o d  
of  m o m e n t s  for the d e t e r m i n a t i o n  of  wave  funct ions  of  mo lecu l a r  systems has  
been considered.  I f  the  m e t h o d  of  m o m e n t s  (or its genera l ized  form, the m e t h o d  
of  least  squares  [2])  is used ins tead  of  the m e t h o d  of  energy var ia t ion  for the 
de t e rmina t i on  of  wave  funct ions  of  mo lecu l a r  systems (a) the  difficulties of  
in tegra t ion  can be s ignif icant ly  r educed  (b) b o u n d - s t a t e  and  scat ter ing p rob l ems  
can be t rea ted  by  a c o m m o n  fo rma l i sm (c) one has  m o r e  f reedom to take  into  
accoun t  different pa r t s  of  the conf igura t iona l  space with different weights  and  
(d) it  is poss ib le  to ob t a in  some r a n d o m - s a m p l i n g  type  e r ror  est imates .  

The  ma in  ques t ion  is na tu ra l l y :  are  these advan tages  of  the m e t h o d  of  m o m e n t s  
no t  p a l e d  by  loss of  accuracy?  One  of  the a ims of  this series of  pape r s  is to cont-  
r ibu te  to this p r o b l e m  b o t h  theore t i ca l ly  and  by  numer ica l  calcula t ions .  The  
resul ts  ob t a ined  so far indicate ,  tha t  if the  p a r a m e t e r s  of  some va r i a t iona l  wave 
funct ion are  de t e rmined  by  bo th  the  m e t h o d  of  m o m e n t s  and  the m e t h o d  of  
energy var ia t ion ,  the difference be tween  the two wave funct ions  is in genera l  
smal l  in c o m p a r i s o n  with the es t ima ted  abso lu t e  e r ro r  in the wave funct ions 
and  it appea r s  acc iden ta l  which m e t h o d  gives be t te r  results  in a given case. 

The  presen t  p a p e r  r epor t s  the resul ts  and  analysis  of  ca lcula t ions  on the 
H 2 0  and  the H 3 N  molecules .  

1 The first and the second paper of the series will be referred to as I and II, respectively. 
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2. The Results 

The wave functions of H20 and H3N have been determined in the dosed- 
shell one-determinant Hartree-Fock approximation described in II. The calcu- 
lations have been carried out for many nuclear configurations. 

The simplest way of defining the basis wave and weight functions is to describe 
them in terms of a set of "starting basis functions". The actual starting basis 
functions have been the following 2' 3 : 

H20 molecule 

Serial Type ~ Center The axis is 
number directed towards 

1 Slater ls 7.700 O 
2 Slater 2s 2.275 O 
3-4 Slater ls 1.000 Ha, Hb 
5-6 Slater 2p 2.275 O 
7 Slater 2p 2.275 O 

8-9 Boys ls 0.370 half way between 
O and Ha, Hb 

Ha, H b 
a direction vertical 
to the HOH-plane 

H3N molecule 

Serial Type a Center The axis is 
number directed towards 

1 Slater ls 6.700 N 
2 Slater 2s 1.950 N 
3-5 Slater ls 1.000 Ha, Hb, Hc 
6-8 Slater 2h 1.950 N 
9 Slater 2p 1.950 N 

10-12 Boys ls 0.370 half-way 
between N and 
Ha, Hb, Hc 

Ha, Hb, Hc 
a direction vertical to 
the H,HbHc-plane 

The actual basis wave and weight functions have been obtained from the 
starting basis functions by expanding them in terms of a finite number of ls 
Boys functions as described in II. For both molecules two different expansions 

2 The H atoms of H20  and H3N are denoted by H,, H b and H,, Hb, He, respectively. 
3 In accordance with II the following notation is applied (N symbolizes the normalization 

coefficient): 

Slater ns function: N , y - l e x p ( - c ~ r )  Yoo(COSg), 

Slater np function: Nnvrn-lexp(-c~r) Y10 (cosO), 

Boys ns function: Nnbr2(n-1)exp(--er 2) Y0o(COS0). 

In addition the 

Slater nh function: positive half-lobe of the Slater np function 
has been used. 



170 M. G. Hegyi, M. Mezei, and T. Szondy: 

Table 1. Number of ls Boys functions makin 9 up the basis functions 
H20 

Serial number Lower Higher 

approximation 

1 1 4 
2 2 4 
3-4 1 4 
5-6 2 4 
7 2 4 
8-9 1 1 

HaN 

Serial number Lower Higher 

approximation 

1 1 4 
2 2 4 
3-5 1 4 
6-8 1 2 
9 2 4 
10-12 1 1 

have been used which will be referred to as "lower" and "higher" approximations. 
The details are given in Table 1. 

In the calculations specified as "method-of-moments" (MM) calculations, the 
basis weight and wave functions correspond to the lower and higher approxi- 
mation, respectively. In the calculations specified as "method-of-energy-variation" 
(EV) calculations both the basis weight and wave functions correspond to the 
higher approximation. 

The results are summarized in the Tables 2-5. The notation is explained in 
Figs. 1-2. All quantities are expressed in atomic units. The notation MM, EV and 
EXP refers to the results calculated by the method of moments, the method of 
energy variation and the experimental results, respectively. 

0 N 

R R 

/ \ c 
Ha 

Ha Hb Hb 
Fig. 1. The nuclei of the H20 molecule Fig. 2. The nuclei of the H3N molecule 
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Table 2. Energy values of the H20  molecule 

1.60 1.80 1.90 2.00 2.20 2.40 

80 ~ MM -74.8923 -74.9550 -74,9623 -74.9602 -74.9368 
EV -74,9236 -75.0172 -75.0389 -75.0495 -75.0206 -75.0206 

90 ~ MM -74.9113 -74.9694 -74.9752 -74.9721 -74.9456 
EV -74.9438 -75.0305 -75.0499 -75.0584 -75.0522 -75.0256 

100 ~ MM -74,9195 -74.9738 -74.9790 -75.0571 -74.9469 
EV -74,9513 -75.0320 -75.0499 -75.0571 -75.0454 -75.1224 

110 ~ MM -74,9180 -74.9703 - 74.9759 -74.9692 -74.9409 
EV -74.9484 -75.0244 -75.0407 -75.0472 -75.0386 -75.0127 

120 ~ MM -74,9091 -74.9591 -74.9626 -74.9569 -74.9282 
EV -74.9376 -75.0096 -75.0244 -75.0298 -75.0209 -74.9946 

130 ~ MM -74.8938 - 74.9414 -74.9442 -74.9376 - 74.9088 
EV -74.9211 -74.9886 -75.0018 -75.0066 -74.9973 -74.9720 

Table3. Energy values oftheHaNmolecule 

R 1.65 1,85 2.05 2.25 2.45 2.65 

80 ~ MM -55.0329 -55.2276 -55.3215 -55.3479 -55.3323 -55.2935 
EV -55.1912 -55.3731 -55.4538 -55.4697 -55.4467 -55,4008 

90 ~ MM -55.0825 -55.2618 -55.3476 -55.3682 -55.3489 -55.3073 
EV -55.2540 -55.4183 -55.4885 -55.4981 -55.4716 -55.4240 

100 ~ MM -55.1056 -55.2771 -55.3540 -55,3707 -55.3482 -55.3051 
EV -55.2953 -55.4438 -55.5032 -55.5068 -55.4764 -55.4289 

110 ~ MM -55.0864 -55.2677 -55,3430 -55.3551 -55.3301 -55.2859 
EV -55.3232 -55.4548 -55.5003 -55.4939 -55.4599 -55.3881 

120 ~ MM -54.6749 -55.2003 -55.3110 -55.3203 -55.2846 -55.2287 
EV -55.3452 -55.4560 -55.4819 -55.4584 -55.4086 -55,3474 

Table 4. Equilibrium nuclear configuration (Ro, ~Oo) and force constants (F) of the H20  molecule [3] 

Ro q~o F R FR~ Fr 

MM 1.90 101.4 7.96 0.32 1.24 
EV 2.04 92.0 8.43 0.51 1.32 
EXP 1.81 104.5 8.36 0.35 0.76 

Table 5. Equilibrium nuclear configuration (Ro, ~Oo) and force constants (F) of the H3 N molecule [33 

Ro CPo F R FR~ F,p 

M M  2.22 96.7 7.20 0,34 1.00 
EV 2.16 101.2 6.42 0,79 0.86 
EXP 1.92 106.7 7.08 0,78 0.53 
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3. Discussion 

In accordance with the estimates given in II, the machine times required for 
the calculation of the method-of-moments wave functions have been shorter by a 
factor of 1 . 4 -  1.8 than those required for the calculation of the corresponding 
method-of-energy-variation wave functions (the factor mainly depending on the 
number of iterations needed to reach self consistence). However significant 
this gain, it is much smaller than that which can be expected if more elaborate 
wave functions are applied. (Loosely speaking, a more elaborate wave function 
can be more drastically simplified to give the corresponding weight function.) 
The decision to test the method of moments first on the lobe orbital approximation 
has been based on the recognition, that this approximation made possible a 
fairly gradual change from the well-tested method of energy variation to the 
terra incognita of the method of moments. 

It can immediately be verified from the results presented in the previous 
section that the accuracy of the results obtained by the method of moments is 
neither significantly better nor significantly worse than that of the results obtained 
by the method of energy variation. As, further, the average overlap between the 
corresponding one-electron wave functions calculated by the two methods is 
~0.998 in the case of the water molecule and ~0.990 in the case of the ammonia 
molecule, it seems justified to expect, that other physical properties which may 
reasonably be calculated from an approximate wave function of the given type 
will also not strongly differ. 

At this point it may be interesting to investigate, how far it is justified to 
extrapolate our results to more elaborate and thus more accurate wave functions. 

The method of moments determines the variational parameters in the vari- 
ational wave function ~p and the approximation g to the energy from the equations 

( w i I H - W [ ~ 0 ) - - 0  ( i = 0 , 1 , . . . , n ) ,  (1) 

where the w~'s denote the weight functions and n is the number of variational 
parameters ~ in cp. 

We put the question in the following way. It is well known that the method of 
energy variation is a special case of the method of moments, namely, that case in 
which Wo = ~p and wi = ~ p / ~ .  In the usual method-of-moments calculations we 
replace these weight functions with mathematically more convenient approxi- 
mations Wo ,-~ ~o and w~ ~ Oq~/O~, which will be denoted by Wo + 6Wo, and wi + 6w~. 
We are asking: what change ~o-~cp +6~p of the wave function results from the 
small changes w o ~ Wo + 6Wo and w~ ~ w~ + ~w~. 

It can be assumed without loss of generality (see Section 2 of I) that all the 
weight functions but one, say Wo, are orthogonal to q~. In this case the variational 
parameters can be determined from the equations with i > 0 while the equation 
with i = 0 serves for the determination of g. Making use of the orthogonality 
relations 

<wil~0> = 0 (i = 1, 2 , . . . ,  n) (2) 

we may write in the last n equations of (1) the exact energy value E instead of 
to give 

(w, l a - E I q ~ ) = O  ( i=  1, 2, ..., n). (3) 
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Let us assume now, that we change the weight functions to some w i + 6wi 
( i=0 ,  1, ..., n). This will change the variational wave function to some q~ + &p. 
We again may assume without loss of generality that the w~ + 6 wi's are orthogonal 
to q~ + &p for i >  0, and we obtain 

(w~ + t w ~ l H -  Elq~ + 6(p)=O 
(4) 

(i = 1, 2, ..., n; (wl + ~Sw~ I q) + 6 9 )  = 0). 

Denoting the exact wave function by ~p and introducing the notation 

= ~o + A (5) 

we obtain from (2) and (5) 

(w~ + 6w~[H - E l f (p )  = (6w, l H -  El A)  . (6) 

It  can be verified, that the change in (p due to the change in the w~'s is proport ional  
to A, the absolute error in q~. Loosely speaking, it can be expected that the smaller 
the absolute error in rp, the less q~ is changed by small changes in the weight 
functions. 

Thus, if our actual weight functions are mathematically more convenient 
approximations w~ + ,Sw i to q~ and the derivates ~ r  then it can be expected, 
that the more accurate ~p the smaller its change 6 q~ due to the changes w~--* wi + 6w~. 

These considerations suggest that  the conclusions drawn from our calculations 
may be valid also for calculations carried out with more elaborate wave functions. 

The results presented in the next paper of the series are obtained by wave functions considerably 
more accurate than those used in this paper. The results obtained from the more accurate wave functions 
appear to support uniquely the conclusions of this section. 

4. The Problem of Complex Eigenvalues 

The method of moments,  in contrast to the method of energy variation may 
lead to complex eigenvalues. Although in a majority of the calculations the eigen- 
values remained de facto real 4 (in accordance with an interesting remark of 
Schwartz [4]) but in the case of the ammonia  molecule complex eigenvalues 
appeared in every case even after having reached self-consistence. Consequently 
it seems necessary to consider this problem in some detail. 

In the case of the ammonia  molecule, two different types of complex eigenva[ues 
could clearly be distinguished. The first type may be called "real eigenvalue with 
complex error". These eigenvalues always belonged to degenerate one-electron 
states, the absolute value of their imaginary part  has been small in comparison 
with the real part  (in most  cases it has been smaller than 10- 5 times the real part) 
and in most  cases significantly decreased or vanished as self consistence has been 
approached. We consider these eigenvalues as "not dangerous" and if they are 
treated in the way described below they appear  to be of a very limited interest. 

4 In this section we understand by eigenvalue a Hartree-Fock eigenvalue, i.e. a diagonal element 
of the diagonal Hartree-Fock eigenvalue matrix. If the Hamiltonian matrix is real, the complex 
eigenvalues are always members of complex conjugate eigenvalue pairs. 
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It seems probable that in many cases these complex eigenvalues have been due 
to round-off errors. 

The other type of eigenvalues may be called "inherently complex eigenvalues". 
They are characterized by a large imaginary component which tends to a well 
defined large value as self-consistence is approached. 

In the case of the ammonia molecule the eigenvalues of the two highest 
(unoccupied) one-electron states have been inherently complex except for the 
nuclear configuration R = 1.65, q~ = 120 ~ 

If such an inherently complex eigenvalue belongs to an unoccupied state, 
the wave function, which is made up of the one-electron eigenfunctions of the 
occupied states may be reasonable. (The unoccupied orbitals of a Hartree-Fock 
approximation are, because of well-known reasons, in general very poor approxi- 
mations to the corresponding physical orbitals. It seems to be of little importance 
in what actual way are they inaccurate.) If, however, an inherently complex 
eigenvalue belongs to an occupied state, the resulting wave function has obviously 
hardly any physical sense. Such a situation indicates that the actual set of basis 
wave and weight functions is inadequate for the problem. 

In any case there is some indication that the appearence of inherently complex eigenvalues may 
unfavourably affect the accuracy and may be a sign that the actual basis sets are not very good for 
the problem. One sign of this is, that for the H3N molecule in the immediate neighbourhood ofR = 1.65 
and q~ = 120 ~ the approximation become sensitive to round-off errors. 

Let us consider now the treatment of a "real eigenvalue with complex error". 
If H denotes the (real but non-symmetrical) Hamiltonian matrix, E the (complex) 
eigenvalue and A the corresponding (complex) eigenvector, the eigenvalue 
equation has the form 

H A  = E A .  (7) 

Writing out the real and imaginary part of (7) we obtain 

H .  Re(A)= Re(E). Re(A) -  Ira(E)- Im(A), (8) 

H.  Ira(A) = Re(E). Im(A)+ Im(E)- Re(A). (9) 

It can immediately be verified that if Im(E)~0 (8)-(9) becomes the eigenvalue 
equation of the twice-degenerate eigenvalue Re(E), the corresponding eigen- 
vectors being Re(A) and Ira(A). 

Thus, if a pair of complex conjugate eigenvalues is considered as a degenerate 
real eigenvalue with complex error, the corresponding real eigenvectors are 
Re(A) and Im(A). 

The program carrying out the calculations treated all the complex eigenvalues 
(also the "inherent" ones) in this way. 
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